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Abstract

The basic direction underlying this work is the continuing
study of certain fundamental features associated with the nonlinear
wave propagation which are motivated and arise in physical problems.
The usefulness of the work is attested to by the varied applications,
and wide areas of interest in physics, engineering and mathematics.
The work accomplished relates to fluid mechanics, nonlinear optics,
multidimensional solitons, Painlevé equations, long time asymptotic
solutions, new linearizations of the KdV equation, Riemann~
Hilbert problems etc.

(1) Research Objectives and Accomplishments

The continuing theme of the work performed under
this grant has been the study of nonlinear wave propagation associated
with physically significant systems. The work has important appli-
cations in fluid dynamics (e.g. long waves in stratified fluids), non-
linear optics (e.g. self-induced tranparency, and self-focussing of
light), and mathematical physics as well as important consequences
in mathematics. 1Individuals working with me and hence partially
associated with this grant include: Dr. i isios Fokas, Assistant
Professor of Mathematics and Computer Science, or. Akira Nakamura,
post doctoral fellow in Mathematics and Computer Science, Mr. Thiab
Taha and Mr. Paulo Santini, graduate students in Mathematics and
Computer Science. Attached please find the technical section of
our recent proposal to A.F.0.S.R. In this proposal many oi tne
main directions and results are outlined. 1In addition we have
listed all our publications and preprints carried out and conceived

during the period of this grant.




Finally we point out an entirely new and important area

of study which was developed during tihe past year. Numely we

have employed a novel linear integral eqguation which, in principal
allows one to capture a far larger class of solutions to the
Korteweg-deVries equation (KAV) than Goes the well known Gel'fand-
Levitan-Marchenko eqguation. In our recent paper attached we |
(a) give a direct proof of the above facts; (b) discuss how tihe
Gel'fand-Levitan-Marchenko equation may be recovered as a special
case, (c) characterize a three parameter family of solutions to
the self-similar O.D.E. associated with KAV and which may be
directly related to the second Painlevé equation. (We note that
the Gel'fand-Levitan'Marchenko equation only characterizes a one

parameter family of such solutions). In order to carry out (c) we

had to investigate a concrete singular integral eguation in which
the contour L consists of 5 rays all passing thru the origin. The
analysis requires the full power (and some extensions) of the
classical theory of singular integral equations.

It should be remarked tnat (i) the integral equation
applies to potentials of the Schrédinger equation, even without

the application to KdV or P (ii) the motivation for developing

11’
such an integral equation originates from the concept of summing

perturbation series. (iii) Recently Flaschka and Newell considered

PII via monodromy theory. In their work they derive a formal

system of linear singular integral equations for the general solution

of P;y- However the highly nontrivial question of existence of

solutions was left open. How their work and ours relate is a
guestion for future research. (iv) The linear version of Kdv:

u ta, . = 0 is solved in full generality as a special case.




Some future directions are: (a) Investigation of the full
generality of tihe soluticns of KdV via this new formulation.
(b) Development of similar types of integral equaticns for other
nonlinear evolution equations, as well as ones which relate to
natural "equilibrium" states for K4V, other than the zero (or
vacuum) state
The other areas of interest are continuing. They include:

. Investigation of a class of physically significant
nonlinear singular integro-differential equations, and associated
novel scattering problems.

. Transverse Instability of One-Dimensional Transparent
Optical Pulses in Resonant Media,

. Perturbations of Solitons and Sclitary Waves.

. Focussing Phenomena in Nonlinear Wave Propagation.

. Two-dimensional Lumps and Multidimensicral I.S.T.

. A Connection between Nonlinear Evolution Equations

and Nonlinear O.D.E.'s of Painlevé Type.

. Discrete I.S.T. and Numerical Applications.
. Long Time Asymptotic Solutions.

. Applications of Hirota's Bilinear Theory.
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0. PFPorward

The main purpose for the continuation of this rescarceh
funding is to support the work presently being carried out b
Mark Ablowitz, and his associates, in the Mathcmatics and Computer
Science Department at Clarkson Collegc of Technology. The
principal investigator has been working in the geaeral areca of
nonlinear wave propagation for almost ten years. The scope of
the work is broad, although it has as its principal focus the
uhderstudying of nonlinear phenomena connected with the wave
propagation which arise in physical problems. 1In recent years
significant breakthroughs have been made and this area of research
is oi current interest to mathematicians, physicists, and engineers
alikél During the past year, the active research funds allowed
us to support Dr. J. Satsuma as a Postdoctoral Research Associate
at Clarkson, while he was on leave from Kyoto University. Dr.
Satsuma is a well known authority in this field of research and
he has been a valuable asset to our research program. Dr. Satsuma
returned to Kyoto on September 30, 1950; nevertheless we have
continued to collaborate on problems of joint interest. Subseguently
Dr. akira Nakamura, also from Kyoto has come to Clarkson as a
Postdoctoral associate on this grant. Dr. Nakamura has written
a number of significant papers in this area and we expect
collaboration between us to be very fruitful.

The proposal is divided as follows. In the first
section an abstract of the research is given. In the second section
we give a report of current and proposed research. The third
section gives references; the fourth section contains curriculum

vitaes of the principal investigator and Dr. Nakanmura, and the fifth

section contains a proposed budget for two years.




1. Abstract

During the past two dccades signiiicant_alvances in o the
study of nonlinear wave phenomena have occurred. These advaznces
have allowed researchers to begin to understand some of the
fundamental building blocks associated with nonlincar waves 2s
well as being able to obtain solutions to a number of nonlinear
evolution equations. It is important to recognize that these
studies are generic in nature and apply to numerous physicel
problems such as propagation of long waves in stratified fluids,
self-focussing in nonlinear optics, self-induced transparency,
water waves, plasma physics, etc.

In the period of time mentioned above, both approximate
and exact methods of solution to problems of physical sig-
nificance have emerged. Especially significant amongst the
exact methods of analysis is what I shall refer to as the
Inverse Scattering Transform and the associated concept of
the soliton. This method has found applications to physics,
engineering and mathematics alike. The results already obtained,
and the wide ranging interest in these problems have motivated

our work. In this proposal we discuss scme of the research

problems which we are actively pursuing.
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‘2. Current and Proposed Pescarch

Since this reserch began to be supported by the Alr Force
Office of Scientific Research, we have actively studicd a nunber
of problems in nonlinear wave theory. In wvhat follows we shall
list some of the areas which we have studied alony with the
principal results and future directions.

(a) A Class of Physically Significant Singular Jonlinzar
Integro~Differential Equations.

Very recently we have become interested in a class of
nonlinear singular integro-differential eguations. The particular
physical application of this problem is to long internal gravity
waves in a stratified fluid. However both the way in which it H

arises, and the relevant mathematics strongly suggest that many

other applications will be found as well. 1In fact private
communications have indicated that there are applications to

plasma physics. The specific equation we have considered is:

ut+2uux+T(uxx)+:—é-ux = 0 (1)
_ 1 x-£
where T(u) = # (-ig)coth(fg—)u(g)dg.

f“w represents the principal value integral and § is a parameter.
References [1,2] discuss the derivation of (2) in the context

of internal waves. As 6+0 we have the KdV equation

6 — 3

wheras if 6+« .. h e the so-called Benjamin-Ono equation l

e



+ 3+ -
ut 2uux ”(Uxx) 0, (3)
where H(u) = =f wréndi 1s the Hilbert transform of u.

Thus equation (1) contains as limiting forms both the
KdV and Benjamin-Ono equations. The fact that (1) has multi-
soliton solutions ([3], [4]) suggested to us that indeed (1)
may be solvable by the Inverse Scattering Transform (I.S.T.).
In our recent work [51, [6] we have found a Bicklund Transfor-
mation, a generalized Miura Transformation, soliton and rational

solutions, interesting dynamical systems and a new type of

scattering problem. This scattering problem is given by the

eguation

i+ -2yt =y (4)

+
where u satisfies eguation (l), and y~ are the boundary values 3

. . . . +
of a function analytic in the strips o<Imx<26 for v ,

-28<Imx<c for ¢ , and periodically extended. Specifically,
equation (4) is a differential Riemann-Hilbert problem. When

2,u are given by

2)\ = -kcoth2kd, u = kcosech2k§,

and ¥ (x) = w+(x+2i6) (by periodicity) we find that in the limit

6+0 we have the Schrddinger scattering problem

2,u -
vt 24y = 0 (5)
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which is the linear scattering preb

(2). At the present time we are studying the inverse scattering
associated with (4). 1In our most recent work {7} we have found
Fredholm integral ecquations for the Jost functions associated
with (4). This is unlike previous local scattering problems
where the Jost functions satisfy Veolterra type integral eguations.
Ve note that now the scattering problem (4) and associated
nonlinear evolution equation (1) are not local. 1In thosc cases
where the Fredholm eguations have no nontrivial homogeneous

solutions, we have been able to do the inverse scattering and hence

/]

the corresnonding initial value nroblen associated with (l). This

)

requires both & and max|u(x)t=0); to be small enough (i.e.,
satisfy certain inequalities - in some sense this is near the
K4V equation). When &+« (the Benjamin-Ono limit) we have found
homogensous solutions to the Frecholm integral egquation. We
have not vet carried out the complete inverse scattering analysis
when such homoceneous solutions exist. This will be one
important aspect of our future work.

Finallv, it should be pointed out that we feel that there
are other significant nonlinear singular integro differential
evolution eguations which should fall into the category of
solvable by I.S.T. and processing solitons, we shall also
investigate such possibilities in the near future.

(b) Transverse Instability of One Dimensional Transparent
Optical Pulses in Resonant Media.

It is well known that ultrashort optical pulses may

propagatc coherently, without attenuation in certain resonant

om associated with Lio V4V cguatiorn
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media [8,9]1. This phenomena is commcnly referreéd to as Seli-
Incduced Transparency (S.I.T.) and has becn intensively studicd
experimentally, numerically, and analytically by numerous
researchers, motivated at least in part, by significant potential
applications. From a mathematical point of view the one
dimensional eguations of S.I.T. are very special. Namelw., it

has been shown that these eguations can be fully integrated by
the use of the Inverse Scattering Transform [10,113. Spescifically,
the above analysis has shown that arbitrary initial valuves break
up into a sequence of coherent pulses, which do not decay as

they propagate, plus radiation which rapidly attentuates. These
coherent pulses are referred to as solitons.

There are various types of solitons [8,91; e.g. "27
pulses” ("hyperbolic secant pulses"), "or pulses" ("breathecrs”;
etc. In our paper, "Transverse Instability of One-Dimensional
Transparent Optical Pulses in Resonant Media", [12] we have

shown analytically, that the 27t pulse is, in fact, unstable

to certain transverse variations (i.e. multidimensional pertur-

bations). These results are consistent with numerical and
experimental studies on the transverse effects in S.I.T. [13-1:1.
The latter work has shown that transverse variations can leai <o
frequencv-amplitude modulations, and in some cases self-Iccussing
filaments. Similarly in [15] we have recently been able to show
that the breather solution (o7 pulse) is also unstable to long

transverse perturbations. Mathematically speaking, this work

was difficult because the earlier analysis had to be much further

developed. We point out that this analytical stability calculation

is on a mode which is much more complicated than a permanent travelling
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wave (i.e. a simple soliton 27 pulse). In the future we wish
to examine the stability of a double pole solution (i.e. a
limiting form of a breather solution just before it breaks up
into a two soliton state) as well as attempiing to more fully
understand both the properties of the two dimensional model,
as well as looking for new multidimension soliton like solitons
(see also (e)).

(c) Perturbations of Solitons and Solitary Waves.

The above work on transverse stability of solitons in
$.I.T. led us naturally to the problem of adding general weak
perturbations to equations which admit solitons or solitary
waves as special solutions (both in one and more than one dimension).
Some of the mathematical machinery was already in place due to
the work done in part (b) described above. We have found [16]
that, generally speaking, such perturbation problems can be
successfully handled by more or lesg well known perturbation methods.
We have ccmpared our results to some of those in the literature
which employ the Inverse Scattering Transform (sece for example
[17-191. One advantage to our technigue is that it also applies to

problems for which I.S.T. does not apply.

Our analysis shows in some detail that there is quite
different phenomena occurring in different regions of space.
Namely near the peak of the soliton we have adiabatic motion
of the soliton (or solitary wave). Away from the soliton a
linear ¥%.K.B. theory applies. The results are asymptotically
matched in order to obtain a uniformly valid theory. To our

knowledge this theory is the first such uniformly valid calculation

of a perturbation of a soliton or solitary wave. Previous theories
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£

were valid in limited recicns of swnace only.

By examining other eguatione admitting solitary wave
solutions (i.e. ones which are not solvable by I.S.T.) we
believe that we have discovered a new class vl equations wihich
have focussing sngularities, (namely, equations which have
certain solutions which are "nice" initially, but blow up
in a finite time).

For example, we have discovered evidence that strongly

indicates that the following eguation is in this class:

ut+upux+uxxx =0 (6)
for p> 4. We hope to continue to investigate such questions
in the near future. These gquestions are of both mathematical
and physical interest. For example, such a question arises in
the propagation of water waves ((d) below).

(d) Focussing and irnstability associated with the

propagation of water waves.

i s

As mentioned, one such physical problem where focussing
occurs is that of water waves. We have considered the evolution
of gravity-capillary waves on a free surface of a layer of fluid
with constant depth. Beginning with the standard equations of

water waves, one can develop the evolution equation of a

modulated weakly nonlinear periodic wave (with fixed central
wave number k) travelling in the x-direction whose amplitude
and phase vary slowly in both the x and y directions. This
problem has been considered by Benney and Roskes [20) and Davey
and Stewartson [21] without surface tension and by Djordjevic

i
!
[
and Redekopp [22] who included this effect. For sufficiently !
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long times, the complex wave amplitude o (x,v,t) and mean voelocity
potential ¢ (x,v,t) satisfy

| + C + = o
iA Axx A

- 2
ab o+ oy = E01aln (7)
Here, oy = +1, 0, = +l,0,f are real constants wvhich depend o=
a dimensionless wavenumber and dimensionless surface tension
coefficient. Ablowitz and Segur [23] have shown that there
exists a whole parameter regime where these eguations have
solutions which evolve from "nice" initial values into a statc

where the amplitude becomes infinite in finite time! 1In this

regime the fully ncnlinear water wave eguations must be

analyzed. Moreover, in [23] it was demonstrated that

all orne Zimensional soliton solutions to (7) are unstable with
respect %o long transverse variations. These results indicate
the need for understanding the true multidimensional character
of the eguation. It also should be noted that the work in [23]
has motivated recent experimental work. In the future we hope
to consider how these focussing solutions can be understood in
the context of the fully nonlinear water wave equations, as well
as studying potentially solvablc multidimensional cases of (7)

{see also (e) below).
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(e) Two-dimensional Lumps 1n lNonlinear Dispersive
Systems
Suitable (long wave) limits of the abowve equation of

governing water waves (7) [21-22] reduce to

iA_ - 0,A_ + A = czA]Al2 + 20

t 1" xx YY © oxA

172

- - 2 :
O10x * Oyy = ({ars, (8)

Tyr Oy = +1, or for very long waves (comparable to the weak

nonlinearities):

(ut + 6uux + uxxx)x + °3uyy = 0, (9)
03 = +1. Both of these equations belong to fie class of nonlinear
evolution ecuations where I1.S.T. is applicable [24,25]). Indeed,
recent work on the complete integration of these and also the
three wave interaction equations has been undertaken very recently
[see for example 26,27,281. Alternatively, via Hirota's method,
N plane wave soliton solutions can be directly constructed [see
for example 29). These latter solutions are guasi-one dimensional;
they describe the multiple collision of N solitons each of which
may propagate in different directions, but which do not decay
at infinity.

It is of interest to find essentially two-dimensional
éolitons which would be analogues of those in one dimension.
By taking limits of the N-plane wave soliton solutions described
above and choosing certain parameters appropriately, we have
discovered permanent two-dimensional nonsingular lump type

solutions decaying in all directions to equation (9) [30,




sce also 311, Contirvalng in that direcction we have investiqated
analogous solutions oosoclated with cguation (8). We have shown
that eg. (8) possesscs a lump solution of envelope hole tyve.
Moreover, we have conutructed solutions describing multiple
collisions of lumps to both eas. (8), (9) [(32]. It is of
interest to see how these solutions can be fit into the 1.S.T.
picture and also to investigate other equations which may give
rise to such multidim—-nsional lump type solutions (e.g. S.I.T.,
the self dual Yany Mills equations etc.). We hope to investigate
such questions in the future as well as to study the generality
of the initial valuec solutions of such equations obtained by I.S.T.
(f£) A Connection Between Nonlinear Evolution Equations

and Certain Nonlinear O.D.E.'s of Painlevé type

* The development of the inverse scattering transform (I.S.T.)
has shown that certain nonlinear evolution equations possess
a number of remarxablc properties, including the existence of
solitons, an infinite set of conservation laws, an explicit set
of action angle variables, etc. We have noted in [33) that
there is a connection between these nonlinear partial differential
eéuations (PDE's) solvable by I.S.T. and nonlinear ordinary
differential equations (ODE's) without movable critical points.

(Some definitions: a critical point is a branch point or an

essential singularity in the solution of the ODE. It is movable
if its location in thec complex plane depends on the constants of
integration of the ODE. A family of solutions of the ODE without
movable critical points has the P-property; here P stands for
Painlevé.) In [34~-36) we have announced and developed a numbecr

of results which.indicate that this connection to ODE's of P-type

is yet another remarkable property of these special nonlincar PDE's.




We have conjecturced thot:
Every nonlincar ODE obtained by a similarity reductic:
of a nonlincar PDC of I.S.T. class is, perhaps after
a transformation of variables, of P-tvpe.
Here we refer to a nonlinear PDE as being in the I.S.T. class
if nontrivial solutions of the PPE can be found by solvinc

a linear integral eguation of the Gel-fand-Levitar~larchenko

form. No general proof of this conjecture is available vet,

but we have proven a more restricted result in this direction.
It is known that under scaling transformations certain nonlinear
PDE's of I.S.T. class reduce to ODE's. Moreover, the solutions
of these ODE's may be obtained by solving linear integral eguations.
We have shown that every such family of solutions has the
P-property.

We note that the conjecture in its strongest form relates
to ODE's obtained from eguations solved directly by I.S.T.

There are many examples of equations solved only indirectly

by I.5.T.; the sine-Gordon equation is one of the best known
examples. An ODE obtained from an equationrn solved indirectly

by I.8.T. need not be of P-type, but it may be related through

a transformation to an ODE that is.

One consequence of this conjecture is an explicit test
of whether or not a given PDE may be of I.5.T. class; namely,
reduce it to an ODE, and determine whether the ODE is of P~type.
To this end, we identify certain necessary conditions that
an ODE must satisfy to be of P~type and describe an explicit

algorithm to determine whether an ODE meets these necessary

conditions. ~
Finally, we have exploited this connection in order tc

develop both solutions and asymptotic connection formulae to

-
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some of the classical transcendents of Painleve [37) as well
as others,.

In the future we shall consider the following problems:
; (1) the complete connection formulae (i.e. the global connecction
of asymptotic states) for the interesting Painlevé equations
associated with linear Gel'fand-Levitan-Marchenko eguations;
(2) To prove that the O0.D.E.'s which we have derived, in fact
satisfy the property that they have no movable essential
singularities, regardless of initial conditions; (3) To

develop solutions to these 0.D.E.'s which correspond to gencral |

initial conditions. In this regard the recent work of Flaschka

and Newell [38) may be of interest. (4) Study the connecticn

between the Backlund transformations developed in the Russian

literature (see the review [39]) and by Fokas [40] and their
connection to I.S.T. and monodromy preserving deformations.

(g) Discrete I.S.T. and Numerical Schemes

It is significant that many of the concepts related to
the inverse scattering theory apply to suitably discretized
nonlinear evolution eguations; for example the Toda lattice,
and discrete nonlinear Schrddinger equation (see for example
[413, [42]). It is of interest to ask whether one can solve
partial difference equations (i.e. numerical schemes) by inverse
scattering. An obvious application would be to numerical
simulations. We have succeeded in analytically developing such
schemes [43]. These schemes’can be shown to converge to a
given nonlinear P.D.E. (which itself is solvablg by inverse

scattering) in the continuous limit. Morcover they have the

nice property that they are neutrally stable, have exact soliton

solutions and possess an infinite number of conserved quantities.




Recently we have (a student, T. Taha and myself) begun to

'"IBEF!5:==----l--!E!l!IlllIlIII'--I-l.'....-ll-II-l-.-.-.u-.g--_._r— fﬂ!

compare the practical numerical simulation of a given nonlinecar
P.D.E. (e.g. cubic nonlinear Schrddinger or KdV) using traditional
methods, with our newly developed schemes. 1In this sense, wo
hope to assess the usefulness of various numerical schecnies
on important model nonlinear problems. Preliminary results
indicate very encouraging vossibilities for these "new"
schemes developed via I.S.T.

(h) Asymptotic Solutions

Aspects of the asymptotic solution of equations solvable

by 1.5.T. have been discussed by many authors. For a review

of much of this work the reader may wish to see [37]. Despite
all of “he work already done on this question, the problem of
long time asymptotic state evolving from initial data containing
both solitons and the dispersive wavetrain remained unresolved.
Indeed the separate guestions of finding the asymptotic states
evolving from initial conditions containing only pure solitons
or pure.dispersive waves had been solved. The difficulty that

must be overcome when both states are present is that the

solitons and dispersive wavetrain are of différing exponentially
small asymptotic orders in certain regions of space. Recently
[44] we were able to completely resolve this question for Kadv.
Moreover we find explicit formulae giving the phase shift of a
soliton when it interacts with both solitons as well as the
dispersive waves. A corollary to this result is the.definition

of a "perfect soliton' of an evolution equation; i.e. one which

in the long time limit interacts elastically with any sufficiently

localized disturbance.
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We feel the ideas and methods described in [44) s ould

apply in principle, to other nonlincar evolution equations

solvable by I.S.T. Ue hope to investigate this guestion for
{ some of the other nonlinear-evolution equations solvable by
f I.5.T. (e.g. Nonlinear Schrddinger, Modified K&V, etc.)
(i) Recent Work by A. NAKAMURA 3
(a) A direct method of obtaining multiple periodic
wave solutions
Recently the study of multiply periodic wave solutions

to nonlinear evolution equations has been attracting the interest

of numerous scientists. Here multiply periodic wave solutions
corresponc¢ to the nonlinearly superposed state of several
nonlinear periodic waves. This also corresponds to the periodic
generalization of the so-called multiple soliton solutions of
nonlinear evolution equations.

So far the analytic theory to calculate these
multipl;” periodic wave solutions has been bésed on the theory of
rather abstract multidimensional Riemann surfaces. Recently we
have developed a completely independent and different approach
to this problem, based on Hirota's direct method developed in
soliton theory [45]. Just as the name indicates, our method
is very direct. The direct method is constructed by elementary
technigques. By this direct method, we have obtained multiply
periodic wave solutions [46] of the intermediate long wave
equation [47) which includes the KAV equation and Benjamin-Ono
equation as limits. This intermediate long wave eguation is
considered to be.important in the description of internal wave

soliton pnenomena and has recently attracted wide interest [48].
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At present, our dircect avbroach howoever has boen dovelened

to calculate only up to a 2-periodic wave solution. %e hope
to extend our direct method to treat arbitrary N-periclic wave
solutions.

(b) Cylindrical solitons, solitons in multi-dimensional
systems

Investigations of solitons in multi~dimensional systems
are important especially in view of the actual application to
the real physical phenomena. Here just as the KAV equation
has crucial importance as a model equation in one-~disensional
nonlinear dispersive systems, the so-called cylindrical Kav [49]
and spherical KdVv [50] equations are important model equations
respectively in two and three-dimensional nonlinear dispersive
systems. Both cylindrical and spherical solitons have been
studied experimentally and numerically [49,51]. However so
far exact analytical solutions to these equations are either
not known (in the case of spherical KAdV equations) or could not
reproduce experimental and numerical results (in the case of
cylindrical KdV equation [53]). By generalizing Hirota's direct
method appropriately, we have obtained a new analytic solution
6f the cylindrical KdV equation which does correctly reproduce
experimental and numerical results [54]. We have also calculated
the Bdcklund transformation for the cylindrical KAV equation [55].
These soliton solutions have a certain self similar character.

Although the cylindrical KAV equation has been successfully
analyzed, the analogous soluﬁiohs of the spherical KdV equation is
not obtained by a straightforward application of.the method to
solve the cylind;ical KAV eguation. However since the cylindrical
and spherical KdV equations are very similar to each other in form,

there is a possibility that a generalization of the method to
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sotve the cylindrical KaV cquation can solve the spherical one.
We are considering such a generalization.

c) Multiple decay mode solutions of nonlinear
evolution equations.

In the case of the cylindrical KdV equation which
has been discussed above, due to conservation of energy, the
inwardly running "ring-form" soliton grows in amplitude and
the outwardly running one decays. Thus it is natural to suspect
that the similarity type solitons which appear in the cylindrical
KdV equation have some relationship to decaying modes of
other nonlinear evolution equations. 1In fact, guided by this
consideration, very recently we have found certain similarity
type multiple decay mode solutions of the two~-dimensional KdVv
(Kadémtsev-?etviashvili) equation [56]. Furthermore it has
been found that these newly found decaying mode solutions and
usual soliton solutions can be nonlinearly superposed with each
other. Further investigation of these and other solutions of
two-dimensional KAV, and their relationship to I.S.T. is
under consideration.

d) Chain of Backlund transformations

It is well known that the typical nonlinear evolution

equations of current interest, K34V and modified KAV (=mKdvV)
eguations are related with each other by the Miura transform
or {(non-auto) Bi#cklund transform. In fact this process continues
fo other equations sequentially. To grasp general characteristics
of this important B&cklund transform, it is worthy to étudy

this series further. We have recently carried out the study of

such Bicklund transform chains e.g. KAV-mKdv-+"second mKav"
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‘L51]+"third RKAV"...[58] where arrows denote Dacklund transfornms.
It is further hoped that from these studies, it will be possible

to extract some meaningful information about the nature of

the Backlund transform itself [58].

ki
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Linearization of the Korteweg—de Vries and Painlevé II Equations

A. S. Fokas and M..J. Ablowitz
Dcpcrtmcnt of Mathematics and Computer Science, Clavkson College of Technology, Potsdam, New York 13676
(Received 22 May 1981)
A new integral equation which llnc:u-izcs the Kortewcg-de Vries and Painlevé IT equa-

tions, and is related to the potentials of the Schridinger eigenvalue problem, is present-

ed. This equation allows one to capture a far larger class of solutions than the Gel'fand-

Levitan equation, which may be recovered as a special case. As an application this

equation, with the aid of the classical thcory of singular integral equations, ylelds a
three-parameter family of solutions to the sclf-similar reduction of Korteweg -de Vries

which is related to Painlevé II. )

PACS numbers: 02.30.+g

Since the work of Gardner etal. in 1967,' there has been wide interest in the analysis of nonlinear
evolution equations solvable by the so-called inverse-scattering transform (IST). The prototype exam-
ple is the Korteweg~de Vries (KdV) equation

2220, (1)

In this note we shall present a new linear integral equation which, in principle, allows one to capture a
far larger class of solutions than does the Gel’fand-Levitan equation. Specifically we claim that if
@(k; x, t) solves

u,+6uu +u

ok; x, t)+§ exp[i(kx+k’t)]f ﬂh{'—-d)«(l) expl i (kx + k)], 2)

where dA(k) and L are an appropriate measure and contour, respectively, then )
9

we= o= Jy olk; 5, £)INR) )

solves the KdV equation. The well-documented physical significance of the KdV equation, of its self-
1096 © 1981 The American Physical Society
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similar analogue, and of the associated Schradinger scattering problem require us to attempt to char-
acterize the form of the most general solution/potential possible.

We now enumerate the basic results given in this note. (i) We give a direct proof that (2) and (3) solve
(1); (ii) we show how the well known Gel’fand-Levitan equation can be obtained from (2) as a special
case; and (iil) we characterize by a matrix Fredholm equation a three-parameter family of solutions to
the similarity ordinary differential equation of (1) which is directly related to the classical second equa-
tion"of Painlevé (PII). We end with some remarks regarding the role of Bicklund transformations and

* relevant generalizations.

We now consider (i). The point of view we take here is, in spirit, similar to that of Zakharov and
Shabat.? Specifically, by direct calculation we show that solutions of (2) substituted in (3) satisfy (1).
We make two assumptions: (a) dx and L are such that differentiation by x, ¢ may be interchanged with
J1; (b) the homogeneous integral equation has only the zero solution. Defining L= I,,+ 3ud,, where L,

23,+8,% after some manipulation we find

L

Lgk; x, t)+i exp[t‘(hz+k’t)]f —%ﬁgd)«(lh 3k[kp,+i@, +iug]. (4)
L (o}

Similar calculations show that the quantity in brackets in the right-hand side of (4) satisfies the homo-
geneous integral equation. Hence I_Fl¢=k¢,+ i@, +iup=0 which implies L¢=0, whereupon 3, f,(Le)dx
=0 is (1). Moreover the equation M¢=0 is directly related to the Schrodinger eigenvalue problem. If

we define

olk; x, 1) = Y(k; x, t)exp[i(kx + &°t)/2],
then Mo =0 gives

¥ s +($RPy+up=0.

(5)

Next we pass on to (ii). The classical theory of inverse scattering and appropriately decaying solutions
of KAV may be most easily obtained as follows. Let the measure dA(k) = ro(%k)dk/h, where 7,(k) is the
usual reflection coefficient of u(x,0) and the contour L goes over all the poles of ro(k). [Here we have
assumed, for convenience, that u(x,0) =0 rapidly as | x| -~ =.] Then substituting the expression for ¢

‘ into (2), defining
K(x, 3,8)=~(3)[ #(k; x, t)exp[ i (ky + £t )/2]d)(k),

and using

expl ik +2)x/2) /(s k)= = i{J exp[ik+ 1)8/2] /24 2}

(R, I satisty Imk, Iml>0), we obtain

Klx, 33 )+ Flx+ 35 8)+ [ K(x, &; )F(£+ y; £)dE =0,

—

where
Fix, ) =(D) [, exp[ i (kx/2+ k%) ]dA(R),

and «(x, £)=23_K(x, x; t). Hence by choosing the
above measure di and contour L, the Gel’fand-

Levitan equation (6) may now be completely by-
passed.

Soliton solutions of (1) may be calculated ina
particularly easy manner from (2). Locations of
the poles on the imaginary k axis in (%, 0) corre-
spond to soliton amplitudes, and the residues of
7{k, 0) at these locations play the role of the nor-
malization coefficients. Pure solitons may also
be obtained by taking the measure as

~dx(r),= B, 80k - i k)
=

(6)

(L passes through the £=i«x,). Then (2) reduces
to a linear algebraic system from which the well
known N-soliton solution is immediately obtained.

We now discuss (iii). The KdV equation admits
the similarity transformation wu(x, ¢ )= U{x’Y(30)¥?
where x'=x/(31)/3, The equation for U is given
by (dropping the primes)

K(U)=U" +6UU'~(2U+xU’)=0, )
We note that (7) is directly related to PI:
P(VN=V"~xV~-2Vi=a. (8)

Specifically we note that the transformations U
== V=V, V=(U’'+a)/(2U~x) relate (8) to the
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equation
K (D) =2U"+ 20 = xU+{v+ U’ -(UN]/(2U = x) =0

with vea(a +1). However, by direct calculation
((2U = X)X, (V) =(2U - x)K,(U), hence K, (U) is an
integral of (7), and thus there is a direct trans-
formation between (7) and (8). One may make
use of these transformations fo find all the known
(see, for example, Lukashevich® and Erugin)
elementary solutions of PII. Ablowitz and Segur?®
had established a connection between PII and IST
and had characterized a one-parameter family of
solutions via the Gel’fand-Levitan equation. Re-
cently Flaschka and Newell® considered PII via
monodromy theory. In the latter work the authors
derived a formal system of linear singular inte-
gral equations for the general solution of P1II.
However, the highly nontrivial question of exis-
tence of solutions was left open.

An application of the result presented above in
(1) is that a three-parameter family of solutions
of (7) may be obtained from the linear singular
integral equation

NGy

L S drap(t),

where b(t)af(t)sexp{:(tx+ t’/a)] and [,

=T By ls, (see Fig. 1), Bi=p,=p, ~Py=P,=
By = p,. (Hereafter j always stands for j=1,...,
5). The solution to (7) is then obtained from

tonlL, (9)

U=~ —f o7Mdr

% ax-L

( @ depends parametrically on x). We note that
both (9) and U are obtained from (2) and (3) by a

self-similar reduction. Moreover the contours
L, are obtained by finding the solution to the lin-
ear problem (U=w,) w™ - (w+x0’)=0 in terms of
integral representations and then deforming these
contours so that they all pass through the origin,
For example, note that L, + L, may be deformed
to the usual Airy-function contour. If we restrict
ourselves to this Airy contour, the result in Ref.
5 is obtained in the same manner as that in (i)
above.

We shall proceed to demonstrate that (9) may be
reduced to a system of Riemann-Hilbert problems
which are solvable using Fredholm theory. For
this we need the full power of the classical theory
of singular integral equations.”®.

Consider the sectionally holomorphic function

H2)=— _/; —gd‘r.

The lines of discontinuity of &(z) are L,; thus
using the Plemelj formulas, we have

274 (10)

o= 0 () egir [, HDdr, o -1, “

6*(t)=t§ﬁ,¢(t)+z"f ﬂ—-df tonlL,

where ¢*(¢) for ¢ on L, has the standard defini-
tions”™® of limits of #(z) as z —-¢ from the “left-
hand side” (+) and “right-hand side” (=) of L,,
and where principal-value integrals are implied
when needed. With use of (11), and Eq. (9) for ¢
on L, and -Z on ~L,, we obtain 2 system which
we choose to write in the form.

&(6)=Gl)e™(2) +F(1), tonI,,

where Z,;=L, +(~L,), *(¢)=[&%¢), " (-0)]7,

[ xQ) =8(=1), F(t) = [f(8)H(2), =f (-DH(~1)]T,
H(t)={p, if ton L,, 0if ton =L,} and the compo-
nents of the 2x2 matrix G(t) are G,,(t) = ~2b(t)
XH() == Gyy(-1), Gia=G,, =1.

One can prove the following statements.

(a) #*(~t), &-(=t) are “minus” and “plus” func-
tions, respectively. (b) Necessary conditions for
solvability of (12) are the symmetry conditions
Gle) =[G(-0)]=2, F(t) +G(t)F(-¢) =0, which are
satisfied by the above G, F. (c) Thus (12) defines
a system of discontinuous Riemann-Hilbert prob-
lems with the additional restriction that ¢7(¢)
=&*(~t). However this condition can be Trelaxed
since one can show that (12) always admits a
solution with this restriction, and moreover, in
our case the solution is unique,

In order to solve (12) we first consider the

(12)
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homogeneous problem. The standard procedure such that w,, * and w,, ~ are plus and minus func-
is to transform the discontinuous homogeneous tions, respectively (e.g., the branch cut for w,,"*
problem to a continuous one, and then obtain the is taken between 0, -z, and hence lies to the
fundamental set of solutions, right of L,). The properties w,,(0+) =exp{—ima ),
Associated with a given contour L, define the w,,(0-) =explima ], w, *(t) =w,,"(~t) allow us
follawing auxilliary functions to map the homogeneous system & *(¢) = G(¢)&~(¢)
¢\ ¢ V' which has a discontinuity at ¢=0 to the following
wy )= ( P’ ) , wu(e) =( ‘_—-) . Riemann-Hilbert system which i{s continuous at
/7 5 the origin:
13
w,.sﬁn;. ksl'.z. (13) !'(l)=g(l)i'(l), ton 1:,, (14)
" . where we have used the transformation € *(¢)
where z, is some j -dependent fixed point off L. =AQ*(¢)¥ *(¢), ¢7(¢)=AR(¢)¥(¢) and hence g(¢)
The branches of the above functions are chosen | = [R%()]AG(1)AR(¢), with A, Q*(¢) defined
by :
1-A, . 1-A . .
% exp{im ,,/2) __,_.uz explim /2] W' 0
A= 4 : Py . , Q,'= . (15)
eXPli'A”/zl explilx 8/2] 0 w; g‘ .

‘where for j=2,3,4 we have a=1, 3=2 and for j =1,5 we have a =2, B=1; 'the A, and A, are defined

by
Oxpli")\u] =.‘.’1"(1 “'ﬁ;‘)lhv e"pli’“n] = ’51 +(1 "'f’)z)‘h: Apj= exp[ziﬂk‘ 11. Ay 'em[zi'xnlo

The matrix g(t) has the properties g(t)=[g(~¢)]™* and detg=-1.

One may characterize a solution of the system (14) by imposing the condition Wz)-¥ =y as |2}~
in A", This leads to a Fredholm equation for, say, ¥°(¢), which however must be interpreted in a
suitable principal-value sense as it does not converge in the normal sense at infinity. Alternatively,
one may obtain a regular Fredholm equation of the second kind by imposing conditions at a finite point
off all contours, say z=1. This leads to the following Fredholm equation for ¥*(¢):

20(‘) +§:—i L[;-:_T -;LI][gl(")g(_T’ -]]g’(r)df =L’;(”Ep { on L-, ’ (16)

where 3=¥(1), J;-_-"E:-.’(f’- +J, ) and 1 1s |
the unit matrix. ‘Any two lindarly {ndependent 8 point property of U is easily verified,

vectors, say 8, ,, lead to a fundamental matrix Finally, we make some remarks, First, we
Y*() =(¥,"(¢), ¥°(2)] for the system (14). only expect from (2) to obtain solutions to P1II in
With use of the above results the fundamental the range -1 < a <}, To obtain the sclution for
matrix of the discontinuous problem (12) is given all ranges of o, we believe, the Bicklund trans-
by . formations (following Rosales'®) and “finite per-
X'(t)=AQ*( )[ ¥,'(t), q,zo(’)] . (17 turbations” (see, for example, Ablowitz and
- - Cornille'") of suitable elementary solutions must
Hence the solution of (12) is given by be employed. Similarly, wider classes of solu-
&) tions to KAV should be obtainable this way (we
- shall remark on this more completely in the fu-
) 1 X)) ture). Second, straightforward generalizations
el X1 fz [x = .] .‘ﬂ_ dr. (18) to the higher-order KdV equations, as well as to
many other nonlinear evolution equations, are
possible. Third, motivation for some of the ideas
Having obtained ¢ *(¢) and using (11) to obtain in this note originate {rom the concept of sum-
¢{t), we have characterized a three-parameter ming perturbation series. Relevant perturbation
family of solutions of U, With use of the resuits series can be readily developed (see, for exam-
of Fredholm’s theory the nonmovable critical- ple, Refs. 1@ and 12),
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